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Invariant volumes of compact groups 

M S Marinov 
Bolotnikovskaya 49, ap. 80, Moscow, 113209 USSR 

Received 11 February 1980 

Abstract. Invariant volumes are calculated for all compact simple Lie groups. The measure 
is defined by means of the Riemannian metric, induced in the group by the Killing form, so 
the total normalisation is fixed. The coset space aspects are discussed. 

1. Introduction 

The concept of the invariant integral over the group manifold was introduced by H 
Weyl and is a powerful method in the theory of group representations (Weyl 1946, 
Helgason 1962, Warner 1972). However, in the spectral theory the absolute value of 
the group volume is usually an inessential constant which has scarcely attracted any 
special interest. The invariant measure for any group manifold is well known; but it is 
rather difficult to calculate the integral directly, because, in particular, the geometry of 
the manifold is on the whole not trivial. 

Recently the calculation of the correctly normalised volumes became more urgent in 
view of the immense progress of the theory of gauge fields. As was shown by 't Hooft 
(1976) for the case of SU(2), the group volume (divided by a power of the coupling 
constant) appears in the expressions determining the effect of zero modes in the gauge 
field fluctuations around the instanton (pseudoparticle) solution. Other authors consi- 
dered this subject for SU(3) (Bernard 1979, Geshkenbein and Ioffe 1979). Quite large 
symmetry groups are now discussed in particle physics (Gell-Mann et a1 1978), and a 
general result may be of some interest. Even for SU(3) the correct number cannot be 
easily obtained directly; that given by Bernard (1979) is a factor of 2 higher than ours. 

The method used here, exploits the spectral expansion of the Green function for the 
quantal motion (or diffusion) on a group manifold. This expansion is written immedi- 
ately in terms of the Weyl characters. On the other hand, the small-time (semiclassical) 
asymptotics of the Green function on any compact Riemannian manifold are deter- 
mined by its most fundamental geometrical properties (Kac 1966, Molchanov 1975). 
The dominating term in the spectral sum is just the volume, divided by (2~rihr)"'~. So, 
starting from the exact Green function and expanding it near the singularity at t = 0, one 
gets the volume. The diffusion and the free quantal motion on compact Lie groups have 
been discussed in a number of works (Eskin 1963, Dowker 1970,1971). Here I use the 
results and some notations from a paper by Marinov and Terentyev (1979). 

In 5 2 the terminology is explained and the notation is given. Section 3 states the 
results. The group volume is defined according to the Riemannian geometry of the 
group manifold. Relation to the Weyl measure is established in Appendix 1. The final 
expression is given in (19), while the relevant quantities are compiled in table 1. In 5 4 
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we discuss some specific aspects of the matter. In particular, the most frequently used 
groups, orthogonal and unitary, are considered in view of their coset space structure. 
The large-N asymptotics of the invariant SU(N) volume are also given. 

2. Preliminaries and notation 

Let G be a compact simple Lie group; Z, its centre, A, the corresponding Lie algebra; 
W, its Weyl group. Suppose that G is simply connected (universal covering), GA = G / Z  
is the adjoint group. The basis elements of A are X,, and 

[xa, x b l =  C:b& (1) 
where c z b  are the (real) structure constants. Elements of G are written by means of the 
exponent 

g = exp(S"Xa), ( 2 )  

Gab = -CfidC;fc (3) 

where 5" are the (real) group parameters. The Killing matrix 

is positive definite in the case of a compact semi-simple group, and the inverse matrix 
exists GabGb" = 8:. By means of a linear transformation in the algebra, Gab may be 
reduced to a diagonal form Gab = A&,, where A is a scale factor. In most applications 
certain values of A # 1 are, as a rule, suitable. 

We use the following notations: r, the rank of A: n, the dimensionality; p = (n  - r ) / 2 ,  
the number of positive roots; n (W), the order of W; n (Z), the order of Z. There is an 
ordered system of positive roots a'"), Y = 1, . . . , p ;  among them are simple roots (a 
basis in the root space) y"', j = 1, , . . , r, and the highest root 

where a j  are positive integers. The scale factor A and a vector p are involved in some 
important formulae; they are expressed in terms of the roots 

the sums are over all positive roots. The Cartan matrix has elements 

Mjk = 2(y"'y'k')/(y"')2* (6) 
that are integers 0, f 1, * 2 ,  or -3. The following nice identities hold for irreducible root 
systems 

n (Z) = det(Mjk), (7 ) 
r 

j = 1  
n(W)  = n(z)r!  'J ai, 

n = 2 4 p 2 / A  = 3 r ( Z c ~ ) ~ / Z c u ~ .  

These identities may be found in the literature (see also the remarks in 8 4). The general 
proofs are rather sophisticated; one may be satisfied with a direct test of them for any 
simple Lie algebra. 
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Instead of the Cartesian coordinates [", defined by (2), polar coordinates (pi w ") 
(v = 1, . . . , 2p )  are introduced on the group manifold 

g = u-l(w)h(p)u(w), (10) 

where h ( p )  = exp(pH) are the elements of the maximal Abelian subgroup H c  G (the 
maximal torus), and Hi are basis elements of the Cartan subalgebra of A, [Hi, Hk] = 0. 
The coset space G/H = 7' is called the orbit space of the group. 

There is a natural metric in the group manifold, as it is discussed by Eisenhart 
(1933), see also Marinov and Terentyev (1979), appendix 2. The line interval is given 
by 

ds2 = gab([) d t a  deb, gab([) =Bf:(t)Bff(t)Gp~, (11) 
where 

and A:(( )  is the adjoint representation matrix. Near the origin (unity of G) the metric is 
Euclidean, gab(()) = G,b because ~ f : ( 0 )  = 8:. It is easy to see that among the eigenvalues 
of the matrix Bf: there are r unities and p complex conjugated pairs 
2 exp[*i(cup)/2] sin $(ap)/(aq). 

3. The invariant volume 

Define the invariant volume of the group manifold by means of the Riemannian 
measure 

where 

lg([)1 =det  g a b ( [ )  =det  Gab 17 [2 sin $(cuqp)/(adI4. 
a >O 

Using the polar coordinates, given in (lo), and the fact that the Jacobian a[/a(p, U )  

depends on p just in the factor ll,,o(ap)2(see Appendix l ) ,  one may rewrite the 
measure in the Weyl form. Thus the invariant volume is 

V d G )  = (det Gab)'/'V(H)V(7'), (14) 
where 

V(H) = I I7 [2 sin $(cup)]* 17 dq  = n (W) Vo(H), 
H or>O 

Here Vo(H) is the Euclidean volume of the maximal torus, and the function p ( w )  is 
given in (A1.6). The appearance of the order of the Weyl group n(W) is here evident 
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with the Weyl formula 

where the sum is over all elements of the Weyl group, E ,  = *l is the signature of the 
element U. 

First consider the adjoint group. The eigenvalues of the matrix At(&) are r unities 
and p pairs exp[*i(acp)]. The elements of W, contained in V, permute the roots; it is  
appropriate to define the domain in the radial coordinates as 0 C (a") S .  , . S (a q )  S 

(a'q) C m, or equivalently, by means of ( r  + 1) inequalities 

( y ( " 9 )  2 0, (alq) c 77. (16) 

This is the Weyl alcove HA = H/Z. The volume of this domain is calculated immedi- 
ately, for instance, by means of an induction in r, 

2 

. . -1 

A more concise formula for this volume may be also written, using (7) and (8). To find 
the volume of the universal covering group one has only to multiply (17) by n ( 2 ) .  

As for the orbit space, its volume is known from indirect considerations (see the next 
section), 

see also (25).  
The final expression is 

Vinv(G) = A " ' 2 ( 2 ~ ) P ~ r [ n  (Z)]3'2/Il(y2/2)'/211(~p)- (19) 

For all simple groups, the quantities involved are presented in table 1. A non-invariant 
volume of the 5 manifold, defined with the usual Euclidean volume element Il d[ near 
(= 0, is given by Vt(G) = VinV(G)/(det Gab)'/*. Of course, one is free to use an 
arbitrary basis in the Lie algebra (1); the volume is calculated respectively. 

Table 1. Parameters characterising the geometry of simple Lie groups. Notations are given 
in 8 2. The scaling dependent data in the last three columns are given for the canonical root 
systems tabulated in Bourbaki (1 968). 

Algebra Group n P n ( Z )  n(W) A n( rZ /2 )  rI(CuP) 

E6 78 36 3 
E7 133 63 2 
Ea 248 120 1 
F4 52 24 1 
Gz 14 6 1  

( r +  I.)! 2( r+ l )  1 
2'r! 2(2r-1) 4 
2'r! 4(r+1) 2 
2r-1r! 4(r-1) 1 

3.4!6! 24 I 
4!4!7! 36 1 
4!6!8! 60 1 
2!4!4! 18 a 
12 24 3 

1 

r I ;= ls !  
2-'n:=1 (2s - l)! 
2'rI:,1(2s - l ) !  
21-'rI:,:(2s)! 

4!5!7! 8! ll! 
5!7!9!11!13!17! 
7!11!13!17!19!23!29! 
2-125!7!11! 
335! 
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4. Comments 
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4.1. Maximal torus 

Any function on the group is periodical in the radial coordinates 

f ( q  i- 2TV) =f(vL 
where 

r ?(i) = 2y(f)/(y(j92 
V = nj9(f), , 

j - 1  

and nj are integers. So the maximal torus for the group is inside a torus T, defined by 
Q = Zjq$$(j), -T < I//i s T. Its Euclidean volume is 

(21) Vo(T) = ( 2 ~ ) '  det(9'k") = (2~) ' (de t  Mjk)"2/II(y2/2)"2. 

Reflection symmetries of the group manifold result in further reduction of the essential 
domain in the cp space. With (8) and (17) one has 

Vo(T)/ VO(HA) = 2'n (W. (22) 

Actually, this result could be obtained immediately from the geometry, and then used to 
prove (8). As for the maximal torus of the universal covering group, its shape is not as 
simple as that of the Weyl alcove (16). 

4.2. Orbit space 

The volume of the orbit space (18) is obtainable from the general results of the spectral 
analysis on the Lie groups (Warner 1972 (vol2, p 68), Flensted-Jensen 1978). Perhaps, 
the clearest deduction is that exploiting properties of the Green function for free 
quantal motion or diffusion on the group manifold (Eskin 1963, Dowker 1971, Marinov 
and Terentyev 1979). The Green function may be represented by the spectral 
expansion, as well as semiclassically, i.e. summing up the contributions from the 
classical trajectories. Suppose the Hamiltonian is given by the Laplace operator A on 
the group, corresponding to the metric ( l l ) ,  H = -$h2A, then the time-dependent 
Green function is 

Here 1 is the representation highest weight, dr the dimensionality, x,(q) the Weyl 
character, e ( l )  = A--'(l2 + 2 p l )  is the eigenvalue of the invariant Casimir operator 
Gab,.XaXt, ; + ~ T V ,  as in (20). Evidently, the semiclassical sum is defined on the 
torus T, so 

= 

C-.' = (det Gab)"2Va(T) V(V). (24) 

The constant C is calculated explicitly, comparing both the expansions, say, at small t 
and q. Then using (21) one gets (18). 
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Having calculated (18)  for all simple groups, we observed that 

where mi are indices of the Weyl group (exposants, see Bourbaki 1968). Note that 
ml = 1, Zjelmi = p ,  and IIi,l(mi + 1)  = n(W). Probably (25) as well as ( 9 )  has a direct 
geometrical meaning and may be proven in a general way. 

4.3. Orthogonal groups SO(N) 

Realisation of the group generators by means of the first-order differential operators in 
a real N-dimensional Euclidean space with coordinates x,, 

x, + L,, = x,a/ax, -x,a/ax,, l < p L < v S N ,  

results in a diagonal Killing matrix (3), given by 

G,Y,,,v,= 2(N - 2)(r3,,,8vv,- r3,up,8,,w,). (26) 

So the scale factor A is the same as that for the canonical root systems, given in table 1. 
Writing the group elements in terms of the rotation angles, g ( w )  = exp(Z,<v+,L,u), 
one gets the normalised volume of the w manifold for the adjoint groups, omitting in 
(19 )  the factors A'"' and n ( Z ) ,  

vw(S0(2r)A) = (2?7)"/g (2s)!. 
s = l  

In the odd case, the group of space rotations is isomorphic to the adjoint group, while in 
the even case it has a centre Z2 (the inversion of all coordinate axes is a rotation 
commuting with other group elements). Introducing a special notation? for the vector 
rotation group SO(N), (the group of real orthogonal N x N matrices), one may write 
SO(2r + 1 ) ~  = SO(2r + l )u ,  SO(2r)A = S0(2r),/Z2 = S0(2r) /Z,  SO(N), = SO(N)/Zz. 
Here the centre Z in the even case is Z2 x Z2 for r = 2m and Z4 for r = 2m + 1. 
Consequently, 

where V(SN) = 2rk/ I ' (k )  is the volume of the unit N-dimensional sphere SN, k = 
i (N+l) .  This is an indication to the topological properties of the coset space, 
SO(2r + 1 ) J S 0 ( 2 r ) 0  = Szr/Z2. The simplest example is given by r = 1 ; the coset space 
S 0 ( 3 ) , / S 0 ( 2 )  is the sphere with identified opposite points, because the rotation by an 
angle cp is the same as the rotation by 2.rr - cp with the axis in the opposite direction. The 
factor of in (28 )  is the reason for our disagreement with Gilmore (1974). 

To construct, the universal covering groups SO(2r + 1) and SO(2r + 2) and their 
centres explicitly, one must use the 2'- dimensional spinor space. The group generators 
are written then in terms of the 2r-dimensional Clifford algebra. The consideration is 
simple, but perhaps not to be followed along the present path. 

f Some authors use instead a special notation Spin(N) for the universal covering of SO(N). 
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It is remarkable that (27 )  is true even at r = 1. Note also that v,,,(so(4)A) = 
Q[ v,(so(3)A)]2, because a rescaling of the rotation angles is necessary in carrying out 
the isomorphic mapping SO(4) = SO(3) X SO(3). Meanwhile, Vinv(S0(4)) = 

[ vinv(s0(3))I2* 

4.4. Unitary groups SU(N) 

Elements of SU(N) are represented with unitary unimodular N x N matrices, some- 
times written as exp(iA,e“), where A,, a = 1, . , . , N 2 -  1, are Hermitian, traceless 
matrices, orthonormal in the sense 

just as the Pauli matrices in the case N = 2. The scale of the group parameters is fixed by 
(29), corresponding to A = 4N, while for the canonical root system (table 1) A = 2N. To 
see this, one may use the general formula, valid for any matrix representation of the Lie 
algebra, X + X1, 

Tr(XLXL) = -Gabc(I)d,/n. (30) 

(The notations are the same as in (23).) For the fundamental representation d = N and 
E = i(1 -N-’) (cf. Marinov and Terentyev 1979). Thus the volume of the 6 manifold is 

In particular, Vc(SU(2)) = 27r’ = V(S3), Vc(SU(3)) = 2r5J3. Note that VInv(SU(2)) = 
V,,,(SO(3)), while according to (27), V,(S0(3)) = 2V,,,(S0(3)A) = 1 6 ~ ’ .  The factor of 
eight is due to the difference in the scale, as LIZ + :A3, etc. 

Consider now the coset space S U ( N + l ) / S U ( N ) ,  which is in a sense locally 
isomorphic to the sphere S ~ N + I .  However, there is still a problem of a consistent 
scaling. Write the ratio of the group volumes as follows 

V[(SU(N + 1))/ Vc(SU(N)) = iV(SzN+i)[(N + 1)/2N]”’(l +N-’). (32) 

The factor of for even N is of the same origin as in (29); the inversion of all axes is an 
element of the group, so the coset space has the topology of SZN+I/ZZ. The third factor 
is due to the structure of the ( N  + 1)-dimensional matrix, commuting with elements of 
the subgroup SU(N), A = [2N/(N+ l)]”’ diag(-N-’, . . . , -N-’, l ) ,  cf. Bernard 
(1979). Finally, the last factor, absent for embedding of the adjoint groups, is the ratio 
of the centre orders. 

The present discussion shows that a calculation of the group volumes, based on the 
coset space metric without inspection of the whole geometry, used by Gilmore (1974) 
and Bernard (1979), is rather subtle. Our direct method provides us with results in 
disagreement with each of the mentioned authors. 

4.5. Asymptotics 

It is remarkable that at large r the leading factors in the invariant volumes (19) cancel. 
To estimate the asymptotics one has to derive an expansion for the product of factorials, 
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present in (25). Using the expansion suggested in Appendix 2, one gets for SU(N) at 
M+oo 

In Vi,,(STJ(N)) = $(N2  -- l ) ( l n ( 4 ~ )  f 312) - (N - 1) In 2 4-2 In N 4-5 In 2 - c + O(N-') ,  

where the constant c is given in (A2.2). 
(33) 

Appendix 1. Jacobian for polar coordinates on the group manifold 

Group elements may be represented in Cartesian coordinates (2) or in polar coor- 
dinates, as in (10). The relation between both the systems is 

(Al.l)  

where A:(@) is the adjoint representation matrix for the group element v ( w ) .  The 
Jacobi matrix J:, A = j or v,.has the elements 

(A1.2) 

The Cartesian coordinates may be established for the element v as well, v ( w )  = 
exp(X,T"), while q a  are functions of w. Having in mind the known formula for a 
derivative of an exponent matrix, as well as the definition of the adjoint group 
representation, one may write 

aA;/aw = a7 b/aw " B ; ( T ) C $ ~ ; ( ~ ) .  (A1.3) 

It is appropriate to calculate the auxiliary matrix 

GAB (5) = J%J!iGao, (A1.4) 

then det GAB = J 2  det Gab, where J = det J:  is the Jacobian. Using the invariance 
property of the Killing form, A,"(w)A2(w)Gab = Gcd, the definition of the root vectors in 
terms of the structure constants in the canonical basis, C$ = iaiS(a, p) ,  and the explicit 
form of Gab in the canonical basis, after some algebra one obtains 

(A1.5) 

Here gWv = & b ( T )  aTa/awc" aT6/aw" represents the metric induced in the orbit spack 'Ir 
by the original metric (11). Thus the Jacobian is 

J =  H ( W h ( 4 ,  ~ ( w )  = [det &v(w)/det (A1.6) 
a r o  

The choice of the 'angular' coordinates w is not essential at present. For instance, they 
may be related to the canonical basis, so that u ( w )  = exp(C,Ea"). 
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Appendix 2. Product of factorials in asymptotics 

Exploiting the method used in obtaining the integral representation of In r ( z )  and the 
asymptotics (Whittaker and Watson 1952), one gets, extracting the singularity at large r, 

- r(ir + 2 - $ In 2 ~ )  + c .- rp (t) exp[-(r + 2 ) t ]  dt, kW 
where 

(A2.1) 

(A2.2) 

The integral in (A2.1) behaves as O(r-l)  at r -* CO; expanding rp(t) in powers of t, one 
may get an analogue of the Stirling expansion for the product of factorials. 

Additional note 

After this paper was submitted for publication, two relevant mathematical works were 
shown to the authors. The more recent one is that by McDonald (1980). Based on the 
fact that the group manifold has the same cohomology, up to the torsion, as a product of 
spheres of dimensions 2mi + lo'= 1, . . . , r ) ,  the author extracts the product of the 
sphere volumes from the group volume, using (25). This notable identity was for a time 
known by Steinberg. Steinberg's deduction (published by Harder 1971, p 454) is 
formally simple, but it stems from an algebraic property of the basic invariants of the Lie 
algebra, the numbers (mi + 1) being the degrees of the invariant polynomials (Freuden- 
thal and deVries 1969). A formula for the group volume containing a multiple integral 
was given also by Cahn (1974). By means of a substitution, this integral may be reduced 
to the integral over the Lie algebra, that was explicitly calculated by McDonald (1980). 
In fact, both the authors exploited the same normalisation property of the zeta function 
(a physicist would prefer the name Green function) on the group manifold, so our 
starting ppints are equivalent. However, neither of the authors mentioned presents an 
ultimately explicit expression, like that of equation (19). 

References 

Bernard C 1979 Phys. Reu. D 19 3013-9 
Bourbaki N 1968 Eliments de Mathmatique, Fasc. 34. Groupes et algtbres de Lie Ch 4-6 (Paris: Hermann) 
Cahn R S 1974 Roc.  Am. Math. Soc. 46 247-9 
Dowker J S 1970 J. Phys. A: Math. Gen. 3 451 
- 1971 Ann. Phys., NY 62 361-82 
Eisenhart L P 1933 Continuous Groups of Transformations (Princeton: University Press) 
Eskin L D 1963, in Pamyatz Chebotareua (in Russian) (Kazan: Kazan State University) pp 113-32 
Flensted-Jensen M 1978 J. Funcr. Anal. 30 106-46 
Freudenthal H and de Vries H 1969 Linear Lie Groups (New York, London: Academic Press) 8 77 
Gell-Mann M, Ramond P and Slansky R 1978 Rev. Mod. Phys. 50 721-44 



3366 M S Marinov 

Geshkenbein B V and Ioffe B L 1979 The role of instantons in generation of mesonic mass spectrum Preprint 
ITEP-82 (MOSCOW: ITEP) 

- 1980 Nucl. Phys. B 166 340-67 
Gilmore R 1974 Lie groups, Lie Algebras und Some of Their Applications (New York, London, Toronto: 

Harder G 1971 Ann.  Scient. Ecole Norm. Sup. 4 409-55 
Helgason S 1962 Differential Geometry and Symmetric Spaces (New York, London: Academic Press) 
't Hooft G 1976 Phys. Rev.  D 14 3432 
- 1978 Phys. Rev.  D 18 2199(E) 
Kac M 1966 Amer. Math. Monthly 73  1-23 
McDonald I G 1980 Inv. math. 56 93-5 
Marinov M S and Terentyev M V 1979 Fortschr. Phys. 27 511-45 
Molchanov S A 1975 Usp. Mat. Nauk (USSR) 30 (1) 3-59 
Warner G 1972 Harmonic Analysis on Semi-simple Lie Groups, 2 vols (New York, Heidelberg, Berlin: 

Weyl H 1946 The Classical Groups (Princeton: University Press) 
Whittaker E T and Watson G N 1952 A Course of Modern Analysis (Cambridge: University Press) Ch 12 

Wiley) 

Springer) 


